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Coupled equations governing the forward- and back-scattered components of a linear 
wave propagating in a region with varying depth may be derived from a second-order 
wave equation for linear wave motion. In this paper previous studies are extended 
to the case of weakly nonlinear Stokes waves coupled a t  third order in wave 
amplitude, using a Lagrangian formulation for irrotational motions. Comparison 
with previous computational and experimental results are made. 

1. Introduction 
Various recent studies have explored the application of the parabolic-equation 

method to the problems of wave propagation in a slowly varying domain. In the linear 
wave approximation, Berkhoff (1972) has provided a second-order wave equation 
governing the surface potential $(x, y) of a harmonic wave, based on the assumption 
of modulation lengthscales smaller than the wave-steepness scale. Radder (1  979) 
obtained coupled parabolic equations for forward- and back-scattered waves, where 
i t  is assumed that both waves travel at  a small angle to a prespecified direction. 
A model for the forward-scattered wave field alone is then obtained by neglecting 
the coupling terms. Berkhoff, Booij & Radder (1982) have provided a data set for 
wave amplitude in an area of waves focused by a submerged shoal, and have used 
the data to test Radder’s model. Additional results for forward scattering alone in 
a linear approximation have been provided by Liu & Mei (1976) and Tsay & Liu 
(1982). Kirby & Dalrymple (1983) have extended the linear wave approximation to 
include the effect of cubic nonlinearity for Stokes waves, which leads to a nonlinear 
Schrodinger equation for the wave amplitude. Kirby & Dalrymple (1984) have tested 
the nonlinear model in comparison with the data set of Berkhoff, Booij & Radder 
and have shown a distinct improvement in agreement between model and data in 
comparison to the results of Radder’s model. The nonlinear model has thus been 
shown to be a relevant addition to the study of combined refractionGIiffraction. 

The results mentioned above are based on the assumption that the reflected wave 
is absent or negligible. This assumption is certainly valid locally in a slowly varying 
domain ; however, a sizeable reflected component may accumulate for waves propa- 
gating over long distances or over fairly abrupt obstacles. Liu & Tsay (1983) have 
developed an iterative scheme based on coupled equations similar to those of Radder 
(1979), and have shown that the coupled method for forward- and back-scattered 
waves is capable of producing results in agreement with a finite-element solution of 
Berkhoffs equation, where the entire wavefield is calculated simultaneously (Tsay 
& Liu 1983). 

In a separate development, Kirby (1986) has shown that Berkhoff s equation may 
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be simply extended to include the case of bottom undulations with lengthscales on 
the order of a wavelength but with small amplitude relative to their wavelength. This 
extension allows for the direct calculation of relatively stronger reflections due to 
Bragg scattering between the surface waves and bed undulations. These reflections 
may be strong even in intermediate water depths, and hence are well suited for 
consideration in the present investigation. 

In this study, we extend the results of Kirby & Dalrymple (1983), Liu & Tsay (1983) 
and Kirby (1985) to study the gradual reflection of Stokes waves by depth variations. 
In $2, a derivation of the equations governing the evolution of a slowly varying 
partial standing wavetrain are derived in order to obtain the nonlinear coupling 
coefficients between incident and reflected waves. Section 3 then presents a splitting 
approach which produces the set of coupled parabolic equations needed. In  $4, we 
study a special case of waves normally incident on topography varying in one 
direction, in order to evaluate the effect of neglecting interaction with wave-induced 
currents which enter the equations at third order. The parabolic approximation is 
then applied to the study of a two-dimensional problem in $5. 

2. Derivation of the equations governing wave propagation 
We wish to derive the equations governing the forward- and backward-moving 

wave components in a partial standing wave, where x is taken as the (positive) 
direction of travel. Previous derivations of the nonlinear Schrodinger equation for 
forward-scattered waves alone have relied on the WKB formulation and a multiple- 
scale expansion of the governing equations. However, a scheme for providing coupled 
equations has not been devised using that approach. Here, we will rely instead on 
a variational formulation using the Lagrangian for irrotational motion of an inviscid 
fluid, given by Luke (1967). After deriving equations for a general wave motion in 
two horizontal dimensions (2, y) and time, the results will be specialized to the case 
of two waves propagating in an antiparallel direction. The method used here is 
further discussed in Kirby (1983) in connection with the problem of wave-current 
interaction. 

2.1. The Lagrangian formulation and governing equations 

The Lagrangian for irrotational motion is given by (Luke 1967) 

Here, q(z, y, t)  is the instantaneous position of the water surface with respect to still 
water level z = 0, and h(z, y)  is the local water depth. The potential $(z, y, z ,  t) is 
related to the fluid velocity according to 

u = V$, (2.2) 

Further, Vh denotes a horizontal gradient vector {a/az, a/ay} and subscripts denote 
differentiation. The corresponding variational principle is given by 

ast sx Ldxdt = 0, 

where the integration is over the propagation space {x, y, t } .  
Since we wish to study the spatial evolution of a time-independent wavefield, it  

is sufficient to chose forms for $ and y based on a slow-modulation solution of the 
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governing equations, as in Whitham (1967). Consequently, we choose a wave-steepness 
scale E and modulation scale p and propose a priori that p z 6,. This assumption 
produces a mild-slope approximation as in Kirby & Dalrymple (1983). We choose 4 
and 7 according to 

7 = %(X, t )  + E2{72(X, t )  + b , ( X ,  /Cut)>. (2.4b) 

Here, $1, ql, $,, 7, correspond to first- and second-order wavelike components, 4; is 
the potential for wave-induced mean flow, b, represents the wave-induced set-down, 
and y, is related to the Bernoulli constant. We remark that in a partial standing wave 
y, cannot be trivially eliminated by choice of b,, and that y,, b, and 4; may have fast 
variations as indicated. The quantities f, and f, are given by 

cosh k(h + z )  cosh 2k(h + z )  
; f2 = sinh4kh ; h = h(px). 

f1 = cosh kh 

Substituting (2.4) in (2.1) and performing the integration results in the expression 

L = Mr2 + h2) + €11 $1, + ."I, $2, + (h  + 7) ($it -Y2)) 
8'h 61), +E3{11, 2 'h 6l"h 6 2  + I1 'h h ' v h  4;) 

+"4{12,2 f('h $2)2+12 'h $2*'h 4; +:(vh #;I2 (h  +7)> 

+ e 2 1 L  + E ~ I : ,  2 61 A++4~;, 2 (2.6) 

I = 1 ' + ~ ~ 1 " + ~ 2 { ( ~ , + b , ) 1 ~ + ~ ~ r ~ + 6 3 { 2 ~ , ( ~ , + ~ , )  I " ' + ~ ; P ) + O ( E ~ ) ,  (2.7) 

The integrals I are over the total depth and are defined in Appendix A. The I's may 
be expanded about z = 0 in Taylor series according to 

as shown in Appendix A. Substituting the expansions in (2.6), expanding the 
remaining appearances of 7, and retaining terms to O(e4) leads to the expression 

(2.8) L = Lo + EL, + E2L, + s3L, + kL,  . 

The individual coefficients L, are given in Appendix B. This ordering has also been 
utilized by Dysthe (1974) after averaging L over the phase function according to 
Whitham's method. Several properties of (2.8) with respect to the desired governing 
equations can be mentioned. Since variation with respect to a dependent parameter 
will reduce the order of L by the order of that parameter, it is clear that the linear 
equation governing the behaviour of a parameter of O(en) will come from the variation 
of L,, with respect to that parameter. Thus the linear equation governing $l will be 
contributed by L,, while L, will contribute the O(s3) terms in phase with $l. 

We now derive governing equations which are generally applicable to any motion 
described by the potential (2.4a) ; Lo and L, contribute nothing in this approximation. 
The linear wave equation is derived by first varying L, with respect to q,, yielding 

the free-surface boundary condition. Varying L, with respect to $l and performing 
a partial integration over the propagation space yields 

-71t-Vh' ( I ; ,  1 'h 181 = O .  (2.10) 
1-2 
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Eliminating ql between (2.9) and (2.10) and inserting the values of the integrals yields 

(2.11) 

which is the time-dependent form of the mild-slope equation of Berkhoff (1972). Here, 

$ltt-vh* cCcg vh $ 1 )  + (W2-kk2CCg) $1 = 0, 

w c:w 
k '  i3k 

C = -. C = -; w 2  = gk tanhkh. (2.12) 

Varying L, with respect to  (7, + b,) yields a free-surface boundary condition, which 
may be written as 

after eliminating yl according to (2.9). Variation of L, with respect to  4; and partial 
integration yields a continuity equation 

1 

9 
(7Z+bZ)t+Vh' (hv$L)--  ($1, 'h $1) +'h. vh $2) = O .  (2.14) 

(q ,  + b,)  may be eliminated between (2.13) and (2.14) to yield a forced-wave equation 
for the quasi-steady motion q3; after averaging over the phase. 

The equation containing the nonlinear modification to the linear wave equation 
(2.1 1) may be obtained by varying L,  + L, together by ql and 6, and eliminating ql ,  
yielding 

~($1t t -vh ' (ccgvh$ l )+ (w2-  k2CCg)$,} = s3{N.L.T.) (2.15) 

{N.L.T.} is a complicated expression involving products of &, (q,+b,), & and $;, 
and is given in Appendix C for completeness. We remark that terms in {N.L.T.} have 
been manipulated by substitution using the linearized relationships, in analogous 
form to the treatment of higher-order terms in the Boussinesq wave formulation. 
Equation (2.15) is in the form of a second-order hyperbolic equation for a general 
wave motion in (5, y ,  t } ;  however, {N.L.T.} contains components proportional to the 
third harmonic &. These terms are eliminated in the derivation of the evolution 
equations. An equation similar to  (2.15) has been given previously by Liu & Tsay 
(1984) for the case of progressive waves. 

2.2. Explicit results for partial standing waves 
We now wish to  construct parabolic approximations for the amplitude of two wave 
components of the same frequency w and with an angle of 180' between the assumed 
direction of the wavenumber vectors. We choose 

$1 = +: +& 

where 

E,  = exp[i( Jk(x)dx-wt)]; E_ = exp[i(-lk(x)dx-ut)]; w2 = gk tanhkh, 

(2.17) 

and where * denotes the complex conjugate of the preceding term. The propagation 
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direction of 4' is oriented with the +z-direction. Using this splitting and the 
equations of the preceding subsection, we obtain 

3io 3iw 
16 16 

$ = - - A  ,E2++* -- B 2 F + * + 0 @ ) ,  

(2.18) 

(2.19) 

{A2E: + B2E2 + *> -- I ;  $2, cash 2kh - 2 

9 = ak sinh 2kh 

(2.20) 
cosh kh(cosh 2kh + 2) 

sinhg kh = ik {A2E2+ + B2P- + *> + Ob), 

The third term in (2.21) corresponds to a rapid standing variation at  cos(2kz) 
corresponding to the envelope of the partial standing wave. Further, 

-gk(2cosh2kh-l) 
{ABE, E- + *>, 

"= 2sinh2kh 
(2.22) 

which represents a spatially slowly varying oscillation at cos (2wt). We remark that 
y, may not be eliminated by choice of b,, in contrast to the progressive-wave problem. 
Elimination of (q,+ b,) between (2.13) and (2.14) yields the forced-wave equation for 
the O(e2) mean motion: 

gk cosh 2kh 
+ 2 sinh 2kh 

(AB*E+ E-+ * ) t  . (2.23) 

The third term on the right-hand side of (2.23) indicates that spatially fast ( -  2kz) 
adjustments in b, and 4; will occur in response to slow temporal changes in the 
amplitude of 4; or 4;. 

Substitution of (2.16)-(2.21) in the expression for N.L.T. yields the result 

-w2k2Dl( 1 A 1, 4; + 1 B 1, 4;)-w2k2D2( I B +I A I,&) 
+terms proportional to E3. (2.24) 

In the following, a Fourier decomposition will eliminate terms proportional to E3, 
which would have been taken care of by inclusion of $3. The coefficients D, and D, 
are given by 

cosh 4kh + 8 - 2 tanh2 kh 
8 sinh4 kh 

D,  = 7 

- (16 sinh4 kh + 4 tanh2 kh) 
8 sinh4 kh 

D, = 9 

(2.25) 

(2.26) 

and have the deep-water asymptotes ( k h + a )  of 1 and -2, respectively, in 
agreement with the results of Benney (1962) and Roskes (1976). Noting that the 
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left-hand side of (2 .15)  is a linear operator on $1, we then arrive a t  decoupled 
equations for qi: and 9; given by 

$ ~ t - V h ' ( c C g V h $ z ) +  ( W 2 - k 2 C C g ) $ p  

&} $: +w2k2(DlIA12+D21B12)~1+ = 0, (2 .27a)  
k2 + 2w k& - { 2w cosh2 kh 

# i t }  $ , + w ~ ~ ~ ( D , I B ~ ~ + D ~ I A ~ ~ ) ~ ,  = 0. (2.27b) 
k2 

- 20 k& + { 2wcosh2kh 

The change in sign of the terms k$i, is related to the different directions of 
propagation of q5: and 4;. Since D ,  is always < 0 ,  while D ,  is > 0 ,  it is apparent 
that the presence of a reflected-wave component 4; weakens the effect of nonlinear 
self-interaction in the incident-wave component. Parabolic approximations governing 
A and B follow by neglecting time dependence for purely harmonic motion, and 
further by assuming that O( I A,, 1 ) 4 O(k I A,  I ) as in Kirby & Dalrymple (1983). 
The decoupled parabolic equations are then given by (following the method of Kirby 
& Dalrymple 1983) 

2ikCCg A,+2k(k-k0)CC,A +i(kCCg), A + ( C C g A , ) ,  

and 
BikKCC, B, - 2k( k - k,) CC, B + i( kCC,), B - ( CCg B, ), 

2 
wk 

+ d k 2  (D, I B l 2  +D2 1 A 12-- (C,),) B = 0, (2.29) 

where k, is a constant wavenumber based on a reference depth h, and defining the 
reference phase function k,x-wt ,  and with A and B now defined according to 

These equations are sufficient for modelling the propagation of the individual 
components &+ and &, including their nonlinear interaction; however, we have not 
yet achieved a coupling capable of predicting the appearance of a gradually reflected 
component q5;. This coupling is achieved in the following section. 

2.3.  Effect of rejlected wave and mass transport on the nonlinear 
dispersion of the incident wave 

The effect of reflected-wave components and induced flow on the third-order 
dispersion of the incident wave may be examined explicitly in the case of one-directional 
propagation over topography varying only in the direction of propagation. In this 
case, we may integrate (2 .23)  after neglecting time dependence to obtain 

$iz = -m gk ( 1 A l2 - I B 1 2 )  + constant, (2.30) 

where the integration constant represents an externally imposed flow which is set to 
zero. Assuming that I BI < IA 1 ;  i.e. t ha t  q5; represents a small wave arising owing 
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FIGURE 1. Variation of D* with kh and reflection coefficient R :  -, including wave-induced 
return flow; - - -, neglecting wave-induced return flow. 

to reflection, and taking R = I B1/1 A1 to represent a reflection coefficient, the 
governing equation for the incident wave may be written as 

2ikCCg A,  + i(kCCg), A - W2k2D* I A 1, A = 0, (2.31) 

where D* = D l + D 2 R 2 - -  (I-R2).  (2.32) 

The last term in D* represents the effect of wave-induced return flow balancing the 
shoreward mass flux of the waves. Since D,  < 0 for all kh, the generation of a reflected 
component reduces the dispersive effect of nonlinearity. Conversely, increasing 
reflection tends to reduce the effect of the wave-induced return current, as the mass 
flux of the reflected wave tends to balance the flux of the incident wave. 

Figure 1 gives plots of D*(kh, R )  for a range 0 < R < 1 ,  with and without current 
effects included. It is noted that, for all reasonably small values of kh, the mean 
current has a noticeable effect on D*, with the effect becoming pronounced for 
kh 5 4. It is also apparent that the reflected wave can act to cancel entirely the 
amplitude dispersion of the incident wave, with the critical value given by 

u2h 

g/w2h-Dl t 
Rc = {g/w2h + D j  ' 

Neglecting current effects, this becomes 

R,  = { -%}', 

(2.33) 

(2.34) 

which is defined for all kh and approaches 2-: as kh + co . When current is included, Rc 
is undefined for kh < 0.649; the deep-water asymptotic value is unaffected. A plot of 
R, with and without currents is given in figure 2.  Since it is apparent that the effect 
of the wave-induced flow can significantly alter the coefficient of the nonlinear term 
for values of kh small enough to give significant depth-change effects over a short 
spatial scale, in $4 we investigate the effect of retaining or dropping the current in 
a one-dimensional example, eliminating q5Lz as was done here. The general problem 
of coupling between A,  B and q5Lz in two dimensions is left to  a subsequent study. 
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FIGURE 2. Critical reflection coefficient €2, for D* = 0: -, - - - , as in figure 1. 

The results of the present study may be further checked by comparison with 
previous work on standing waves. I t  is well known that nonlinear standing waves 
of a given frequency may be longer or shorter than their linear counterparts, 
depending on the relative water depth. Tadjbakhsh & Keller (1960) have provided 
theoretical results which indicate that the point of transition, where the nonlinear 
and linear waves have equivalent lengths, occurs at a relative depth h/L x 0.17, 
where L is the wavelength. In  the present context, this transition occurs when D* = 0 
for R = 1 ; the solution of (2.32) for this case gives kh = 1.022 or h/L = 0.163, which 
is lower than the value predicted by Tadjbakhsh & Keller. This discrepancy is due 
to the presence of the uniform set-down component of b, in (2.21). This uniform 
surface shift would not be allowed for a wave in a closed container (the case studied 
previously) due to mass-conservation requirements. Altering the theory to account 
for this restriction changes the expressions for b, and y, to 

and 

1 k cosh 2kh 
g 2t 2sinh2kh 

2 cash 2kh - 1 
2 sinh 2kh 

b = --4' + {AB*E+ ET + *}, 
I A IZ+  I B 1, 

{L4BE+E-+*}+gk 2sinh2kh ' Y2 = -9k 

(2.35) 

(2.36) 

This shift in reference level has a minor effect on the interaction coefficients D,  and 
D,, which are now given by 

cosh 4kh + 8 
D, = 

8 sinh4 kh ' 
(2.37) 

- (1 6 sinh4 kh + 2 tanh2 kh) 
8 sinh4 kh 

D, = (2.38) 

The revised solution to  (2.32) is given by kh = 1.058 or h/L = 0.168, in agreement 
with the previous results. The factor w,, which represents the distortion to the wave 
frequency for a fixed wavelength in Tadjbakhsh & Keller, may be written in the 
present notation as 

w, = @D*, 

and the agreement between the t w o  theories is seen to be complete. 
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2.4. Extension to the case of rapid bed undulations 

The theory derived to this point is limited in application to waves propagating over 
mild bed slopes, with slope parameter p presumed to be of O(e2) in order to separate 
nonlinear and bottom-slope effects. Reflections from such mild slopes are likely to 
be extremely weak in intermediate water depth. Therefore, i t  is desirable to 
incorporate the ability to model the effect of rapidly undulating, small-amplit.ude bed 
features following Kirby (1985). We thus add a bed amplitude parameter kS to the 
list of O ( p )  parameters, where 6 represents the local deviation of the bed from a 
corresponding mild-slope bottom. If we retain the scaling assumptions used to this 
point, terms like SA, &,A, etc. will still be of O(e3);  the addition of this feature will 
not affect the amplitude dispersion and interaction with the wave-induced mean flow 
at the highest order of magnitude (e3) retained here. We therefore consider the 
extension of the linear-wave Lagrangian formulation to incorporate the features of 
Kirby (1985). The nonlinear terms are unaffected and may be retained intact from 
52.2. 

Defining the total water depth as in Kirby (1985), we have 

h' = h-8, (2.39) 

where h varies slowly with lengthscale p, and where S may vary rapidly but has 
amplitude scale p. Following (2.1), the Lagrangian for the inviscid motion may be 
written as 

L = J-, p(#,+g(v,#)Z+g(#2)2+9z}dz (2.40) 

We now expand the Lagrangian about z = - h and retain the O ( 8 )  contributions to 
the linear motion: 

T 

We now introduce 
# = f l W 3  2) 6A.7 t ) ,  (2.42) 

where f, is given in (2.5). Making the substitutions and integrating gives 

Taking variations of L with respect to 6 and 7 and eliminating 7 leads to the modified 
wave equation given by Kirby (1985) : 

6 ~ ~ ~ Q ~ ' ~ c c ~ v h $ ~ ~ ~ w 2 ~ k 2 c c ~ ~ ~ ~ c o s ~ ~ ~ ~  vh'(SVh6) = o(e,p2).  (2.44) 

The nonlinear model follows, to O($),  by adding the {N.L.T.} (2.24) to the modified 
equation (2.44). 

3. The coupled parabolic equations 
The desired set of coupled equations is derivable in a a large number of ways (see 

McDaniel 1975; Corones 1975; Radder 1979 and Liu & Tsay 1983 for examples) 
involving the application of a splitting matrix to the second-order wave equation. 
In order to extend the results of Kirby (1985) to nonlinear waves, we retain the added 
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term for bed undulations derived above. Restricting attention to harmonic waves and - 
substituting 

into (2.15),  we write 

6, = $ e-iwt ; ++ = $+ e-iwt. , $- = 4- e-'wt 

(6),,+P-'Pz($),+Y2$ = N'$+ + N , $ - ,  

where, to leading order, 

p = ccg-- 4052'6 p-l = (ccg)-'[l+4(q 6]+0(p ' ) ,  
k '  CB 

Q' = gk 
4w cosh2 kh ' 

Y 2 $ =  k 2 { ( l + 4 ~ ) 6 ) ~ ~ ~ ( C c g A ) ~ - ~ ( ~ )  1 4 52' (@&}, 

Nl = ccg ( D ,  I A l 2  + D2 I 12 +z &) 7 

N2 = ~ (D' I B 12+D2 I A 12-- &). 

g 

02k2 2 

u2k2 2 
CCg o k  

and 

(3 .1)  

(3 .2)  

(3.3a, b )  

(3.3c) 

(3 .3d)  

( 3 . 4 4  

(3.4b) 

We remark that the pseudo-operator y is constructed without isolating a refraction 
factor klk, ,  alleviating the need for making the assumption that 

1 (3 .5)  

when performing the binomial expansion of the pseudo-operator (Liu & Tsay 1983). 
This assumption may be violated drastically for waves propagating through regions 
with large depth variations. 

We follow the heuristic scheme of Kirby (1985) for obtaining the parabolic 
equations. Let 

4; = iy$++F($+,$-)+aN,$+, (3 .6a)  

$; = -iy$- - F($+,  $-) +/3N2 $-, (3.6b) 

where F,  a, and /3 are undetermined. a and /3 are chosen so as to eliminate nonlinear 
terms from the coupling term F, leading to equations of the form of (2.28)-(2.29). 
Repeated substitution of (3 .6)  in (3 .2)  then leads to 

and 

(3 .7a)  

(3 .7b)  

where we have retained terms only to O(p, E )  and have used the fact that 
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The resulting coupled parabolic equations are then given by 
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Equations of the form (2.28)-(2.29) are recovered by making the substitutions 

(3.11) 

yielding 

2ikCC, A,+2k(k-k,,) CC,A+ (CCgA,),,+2w8’[2k&-i&,]A-- (&A,), 
408’ 
k 

+i(kCC,),A-CC,N, A = (i(kCCg),-2iwB’&,}B e-2ikos (3.12) 
and 

SikCC, B,- 2k(k- k,) CC, B -  (CC, B,), - 2w8’[2k&+ is,] B+-  (&BY), 
4 w 8 ‘  
k 

+ i(kCC,), B + CC, N ,  B = {i(kCC,), - BiwB’S,} A e2ikoz. (3.13) 

Equations (3.12)-(3.13) may be used in an iterative fashion to calculate the evolution 
of the amplitude envelopes A and B. The numerical scheme used in subsequent 
sections is based on the Crank-Nicolson method, with each equation solved for 
the entire domain using the scheme of Yue & Mei (1980), after which iteration between 
the equations is performed according to the method provided by Liu & Tsay (1983). 
Details are thus omitted. 

Three forms of coupling between (3.12) and (3.13) are apparent. The waves interact 
nonlinearly through the coefficients N ,  and N,.  Secondly, there is a mild-slope 
coupling through the (kCC,), terms on the right-hand sides. Since kCC, is presumed 
to be slowly varying, (kCC,), will usually be a smooth, O ( p )  quantity and the factors 
e*2ikox will provide a near-cancellation due to the rapid oscillation. The third form 
of interaction is through the factor 8, on the right-hand side. This quantity is again 
of O(p);  however, the rapid undulation of 6 will, in resonant cases, provide a 
cancellation of the e f 2ikos factors, leading to strong coupling between incident and 
reflected waves. 

The present method of derivation does not lead to coupling due to transverse 
diffusion terms because of the approximation used to obtain the factor ( yp ) ,  used in F 
(3.7b). This coupling appears in the models of Radder (1979) and Liu & Tsay (1983) 
in the form of third-derivative terms and is sensibly neglected by Liu & Tsay in their 
applications of the model. 
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4. Effect of mass transport terms on nonlinear reflection: normal incidence 
on one-dimensional topography 

As a test of the effect of nonlinearity on the partial reflection process, we first study 
the reflection of normally incident waves propagating over a continuous, one- 
dimensional region of varying depth. This reduction of the problem allows for the 
direct integration of the forced-wavc equation (2.23) as given by (2.30). Neglect of 
the integration constant forces the wavc-induced return flow to balance the net mass 
transport, and is thus consistent with the situation of wave-tank experiments. 
Further, we note that the generation of free long waves should be absent from the 
problem owing to the lack of wavelike modulations in the amplitude envelopes. 

The choice of computational examples which exhibit significant reflection over a 
short spatial scale is difficult in this problem, since water depth would have to be 
relatively shallow in order for an isolated topographic variation with an extent of 
one to two wavelengths to have a significant effect on the incident wave. For example, 
the numerical example chosen by Liu & Tsay (1983) was run for a water depth a t  
infinity corresponding to  kh = 0.42. The range of admissible waveheights yielding an 
Ursell parameter of a permissible size for the Stokes theory to be valid is thus severely 
constrained. Likewise, the linear transition studied by Booij (1983) covered a range 
of depths corresponding to 0.2 < kh Q 0.6, again too small to  be of particular use. 

For the purposes of this study we have chosen to consider the case of reflection 
from an isolated patch of sinusoidally undulating topography as studied recently by 
Davies & Heathershaw (1983). 

The topography is given by h(x) = h,  and 

(x < O ) ,  

sin (2m/Z) (0 < II: < nl), , 
where 1 is the ripple length and n is thc number of ripples. The topography is illus- 
trated in figure 3. For a fixed geometry given by D = 5 cm and 1 = 100cm, Davies 
& Heathershaw conducted a large number of experiments for the ranges 
0.08 < D/h,  < 0.4 (obtained by varying h,) and 1 < n < 10. The lower range of D/h ,  
corresponds to kh = 0 ( 1 )  a t  the peak reflection; these experiments are thus useful 
in the present context. The full linear wave theory presented by Davies & Heatk,ershaw 
predicts a strong reflection for the value 

= 1 ,  
2k 
h 
- 

where A = 2x/1 or L,,,,( = 2n;/k) = 21, due to  Bragg scattering of the incident wave 
by the ripple patch. This reflection peak is amplified owing to  a resonant interaction 
between the incident- and reflected-wave components and the undular bottom. Kirby 
(1985) has presented a numerical solution of the linearized elliptic problem with rapid 
bed undulations in order to compare with the linear perturbation solution of Davies 
& Heathershaw. The numerical solution was seen to give a good reproduction of the 
analytic results. Comparisons have been made using the ' corrected theory ' of Davies 
& Heathershaw, which is obtained by imposing an energy balance on their solution 
in cases where reflection is large. 

The theoretical results of Davies & Heathershaw were used as a check of the 
iterative scheme (3.12)-(3.13) in its linearized form. Results for the case illustrated 
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FIGURE 3. Topography for one-dimensional-model tests. 
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FIGURE 4. Comparison of coupled-equation model with full linear solution: -, ‘corrected’ 
solution, Davies & Heathershaw; - - -, present undular-bed solution; data, Davies & Heathershaw. 
(a) Dlh,  = 0.16, n = 10. ( b )  Dlh,  = 0.32, n = 2. 

in figure 3 of Kirby (1985) (D/h ,  = 0.16, n = 10) and for a new case D/h ,  = 0.32, 
n = 2 respectively were computed using the coupled parabolic equations and a grid 
spacing Ax = 1/20. The reflection coefficients for both cases are shown in figure 4. The 
peak reflection coefficient R obtained using the parabolic model (including rapid 
depth variation) is slightly less than the values predicted by the ‘corrected ’ theory 
of Davies & Heathershaw for the Dlh,  = 0.16 case and within plotting accuracy for 
the D/h,  = 0.32 case. For 2k/h > 2.0 the number of points per incident wavelength 
drops below 20, and some reduction in the reflection coefficient was noted. A further 
reduction in grid spacing to Ax = 1/10 caused a reduction of the reflected-wave 
amplitude at 2k/h = 1 of 6.6% for the case with n = 10. Therefore the value of 
Ax = 1/20 was used for all subsequent runs. 

We now use the nonlinear form of the parabolic equation to study the reflection 
process. Tests were performed using the geometry of figure 4 (a )  (Dlh ,  = 0.16) ; results 
are presented in figure 5 for incident-wave steepness E = 0.2. A plot of Ursell number 
U,. = (Ao /h) / (kh)2  for this case is given in figure 6. The plot indicates that, for the 
chosen value of B ,  results of the Stokes-wave model are only roughly valid for the 
region 2k/h < 1. For small values of 2k/h (large wavelength) it is anticipated that 
the incident-wave phase speed is overestimated. This would have the effect of over- 
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of Ursell Number ['r and relative depth kh for example of figure 5. 

emphasizing the differences between the linear and nonlinear reflection curves in this 
range. 

The curve for nonlinear reflection shown in figure 5 is for the case of no wave-induced 
current. It was found that the presence or absence of the wave-induced flow had no 
significant effect on the reflection process ; the corresponding curve for reflection 
including mean flows is thus not included. This result may be partially explained by 
considering a simplified set of equations taken from (2.28)-(2.29) : 

(4.3) 
W U  

iA,-- A = 0, 

W U  
iBx--  B = 0, 

ccg 

ccg (4.4) 
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where depth is constant and amplitude dispersion is neglected. The quantity U may 
represent the wave-induced return flow or a small flow imposed by boundary 
conditions. Oscillatory solutions of constant amplitude are given by 

{A(x), B(x)} = {a, b} eik’z, 

where k’ = - kU/G,, (4.6) 

(4.5) 

so that (4.7a) 

(4.7 b) 

For simplicity, b may be set equal to a ;  the resulting standing wave may be written 
as 

which reduces to the usual stationary form a t  U+O. It is clear that the stationary 
component cos (kx) is unaffected by the presence of U ;  the relation between the wave 
envelope and topography is thus unaltered. 

The effect of nonlinearity is thus limited to the lengthening of the incident wave 
(for small R) with respect to the topography at fixed w (or k). For large 2klh, the effect 
is a downshift of the maxima and minima of R which increases with increasing B .  It 
is remarked that, for large R, the incident waves may be shortened by nonlinearity; 
the shift in the pattern of R would then be expected to be towards higher values of 
2klh. 

In  the present example, the large reflection coefficient at  the peak 2k/h causes a 
significant weakening of the nonlinear dispersion in the incident wave on the upwave 
side of the ripple patch. Referring to figure 1, we see that a reflection coefficient of 
0.6-0.7 would lead to an effective nonlinear parameter D* with values in the 
neighbourhood of 0. Nonlinearity thus has little effect on the reflection process when 
reflection is strong; this is born out by the result of little or no shift in peak value 
or location of R for this example. This conclusion is partially supported by the 
experimental results of Davies & Heathershaw, who saw little or no effect of varying 
wave steepness on peak reflection, up to the point of breaking in the incident wave. 

5. Two-dimensional topography 
As mentioned in the previous section, the availability of examples which satisfy 

the mild-slope assumption and still provide significant reflection over several 
wavelengths is limited to shallow water, for which the present Stokes-wave model 
is not applicable. Cases where the requirement of intermediate water depth (or Ursell 
number U, g 1) is satisfied tend to exhibit too small a reflection to be of interest here. 
For example, the present model indicates that the reflection upwave of the isolated 
shoal in the data of Berkhoff, Booij & Radder (1982) is limited to approximately 
1-2 % of the incident wave height. 

In  order to take advantage of the relatively strong reflections caused by the 
undulating topography studiedin the previous section, we construct a two-dimensional 
patch of ripples of finite extent in the x- and y-directions. Ripples with length 1 are 
aligned with crests parallel to the y-axis. The patch is symmetric about the x-axis 
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FIGURE 7 (a ,  b ) .  For caption see facing page. 
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FIGURE 7. Normalized amplitude contours: linear wave. n = 4, 1 = 1, D/h, = 0.3, h, = n-l, 
2k/h = 1 : -, amplitude contours; - - -, depth contours 6' = B/h,. (a) Incident wave I A / A ,  1, 
( b )  reflected wave I B / A ,  I, (c) total wavefield I t / A ,  1. 
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FIGURE 8(a). For caption see next page. 
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FIQURE 8. Normalized amplitude contours: nonlinear wave E = 0.2. n = 4, 2 = 1, D/h,  = 0.3, 
h, = n-l, 2k /h  = 1 : -, amplitude contours; - - -, depth contours s' = S/h,.  (a) Incident wave 
I A / A ,  1, ( b )  reflected wave I BIA, I, (c) total wavefield I VIA, I. 
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FIGURE 9. Amplitude I I/& n = 4, D/h,  = 0.3, h, = n-l: - - - , 1' inear waves; -, nonlinear 
waves, E = 0.2. (a) Amplitude along centreline y = 0, ( b )  amplitude along downwave transect z = 31. 

with dimensions nl x 2nl in x and y ,  where n is the number of ripples as before. The 
topography is specified according to h(x , y )  = h, and 

where h, is the depth away from the ripple patch. The computational domain is taken 
to be {z, y I 1 x I < (n+  2 )  tZ, 0 < y < 2nZ}, with A (  - ( n  + 2 )  kZ, y )  = A, specified as the 
incident-wave amplitude. Computations were run with 2k /A  = 1, D/h ,  = 0.3 and a 
far-field relative depth kh, = 1, giving h, = n-l with Z = 1. The Ursell number 
U ,  = (a /h , ) / (kh1)2  and wave steepness E = ka are thus both given by nAo for the 
incident wave. 

Results are shown for the case of n = 4 in figures 7 and 8. Figure 7 gives results 
for the linear case, with normalized amplitude I A / A ,  I given in 7 ( a ) ,  I B / A ,  I in 7 ( b )  
and the total-wave-amplitude envelope I r / A ,  1 in 7 ( c ) .  In figure 8 ,  results are for the 
case of E = u, = 0.2. A comparison of the figures indicates some differences in the 
transmitted wavefield over and downwave of the ripple patch, with the amplitude 
downwave of the last ripple being increased in the nonlinear case, indicating thc 
greater tendency towards diffraction effects due to nonlinearity. This result is 
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consistent with the phenomenon of self-defocusing as demonstrated by Kirby & 
Dalrymple (1983) and, further, is in agreement with Yue’s (1980) results showing that 
diffraction of waves into a shadowed rcgion proceeds more quickly in the nonlinear 
case. The reflected-wave amplitudes are quite similar for both cases, with a minor 
increase in peak amplitude a t  the upwave end of the ripple patch being noted in the 
nonlinear case. 

Comparisons of normalized amplitude for the total wavefield along y = 0 and along 
x = 31 are given in figures 9(a) and ( b )  respectively, for the linear and nonlinear cases. 
Differences are largely confined to an increase in transmitted wave height downwave 
of the ripple patch in the nonlinear case, as discussed above. 

The effect of diffraction in the present example may be estimated simply. If we 
take the peak reflection along the centreline to  be approximately R = 0.6 from figures 
7 or 8 ( b ) ,  we conclude that the transmitted amplitude downwave of the patch should 
be 

T = ( 1  -R2$ = 0.8. 

This value is in rough agreement with the linear result but underestimates the 
nonlinear value of T x 0.9, again indicating the more rapid effects of diffraction in 
the nonlinear case. 

6. Discussion 
I n  this study we have utilized a variational principle to develop a wave equation 

governing the propagation of Stokcs waves in a varying domain, after which use is 
made of a splitting method to provide coupled equations for forward- and back- 
scattered components of an initially plane incident wave propagating over uneven 
topography. 

The restriction to Stokes waves and the resulting constraints on water depth 
relative to  the incident wavelength makes it difficult to develop computational 
examples which describe a significant reflection process arising over a short spatial 
scale. Under the mild-slope conditions and the restriction to intermediate water 
depths, it is likely that the gradual reflection process would be apparent only over 
fairly long spatial scales. The inclusion of the undular bed formulation of Kirby (1985) 
has allowed for the study of reflection by relatively rapid, small-amplitude bed 
features. 

For the case of shallower water, the Stokes-wave formulation is no longer valid, 
and recourse must be made to appropriate equations such as the Boussinesq 
equations. The parabolic approximation for a spectrum of steady (in time) forward- 
scattered waves in the shallow-water regime has been provided by Liu, Yoon & Kirby 
(1985) ; the development of a model for partial reflection in this case is straightforward, 
owing to the lack of nonlinear coupling between incident and reflected waves a t  second 
order, and will be the subject of a further investigation. Also of special interest is 
the case where the incident-wave amplitude is modulated in space and time. The 
treatment of ‘groupy’ waves is not approachable using the reduced wave equation 
of $3;  however, the general time-dependent model (2.15) may form the basis of such 
an approach, after further accounting for terms arising owing to possible fast spatial 
modulations of O(e)  in the amplitude functions. In  this case, the ‘mild-slope’ nature 
of the model may be retained by continuing the restriction that depth variations be 
restricted to O(,u = e2); the terms in the equation which depend on gradients of the 
physical domain would be unaltcrcd. 
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Appendix A. Integrals off functions 

may be expanded according to 
The integrals I are defined as the integral over total depth of an integrand f,  and 

= 1'+71"+~2~+731iv+ ... . (A 1 )  

Substitution of the expansion (2.4b) for 7 yields (2.7). The individual integrals and 
required components are given by 

(A 5 )  
2k cosh kh 1; = 

1 I coshkh cosh 2kh 
k sinh3 kh' - sinh4 kh ' sinh3 kh ' I ,  = f2 dz; I, = 

cosh 2kh 
sinh4 kh ' 

Appendix B. Components of the primitive Lagrangian L 
The Lagrangian L is expanded as a series in powers of the wave-steepness parameter 

G without regard to the relative size of the modulation parameter p. After expanding 
7 and the integrals I in (2.6)' the individual components of L in (2.8) are given by 
(after dividing out the constant density p) 

Lo = -hh2 ,  (B 1 )  

L, = 1; A t  (B 2) 

L3 = 971(72 + b2) + I372 + b2) A t  + 1: 7:: $1, + 7l(& - 7 2 )  

L2 = h7;+Iy7l$lt+I;, 1 t ( v h ~ l ) 2 + 1 : : 1 ~ ( $ 1 ) 2 + h ( ~ ~ t - Y 2 ) + 1 ; 1 $ 2 t '  (B 3) 

+';71$2t+IT, 171 i(vh $l)2+I;, 2 vh $laVh $2 + vh $l"h 4; 
+ q 1  kl iR + 1:: 2 $1 4 2 9  (B 4) 



Appendix C. General form for O(e3)  term in wave equation 
The term {N.L.T.} in (2 .15)  is given here in terms of J1, &, ( q 2 + b z )  and 4;. The 

first-order surface ql has been eliminated through use of (2.9). Further, we have made 
use of the fact that 

t$l,$2)tt = ( - w ~ $ ~ ,  - ~ ~ W ~ $ ~ ) + O ( P L ) ,  

V M l , $ 2 )  = ( -k2$ , ,  - 4 k 2 & ) + O ( ~ ) ,  

(C 1 )  

(C 2) 

for both progressive and standing waves. {N.L.T.} is then given by 

{N.L.T.} = { - gk2 ( q 2 + b 2 ) + y  (&)2-k4 tanh2 kh($$ 
cosh2 kh 

- k2 tanh2 kh(Vh 4J2-- 
sinh2 kh 

4k2( 1 - 2 sinh2 kh) 
sinh4 kh 

k tanh kh 
- 2k tanh kh qzt + $2 + 9 ('h $I):} $1, 

where we have substituted for all I-values from Appendix A. 
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